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Abstract—Recently emerged discriminative non-blind decon-
volution methods achieve excellent performance with only a
fraction of computation cost w.r.t. generative competitors, but
their extension to blind deconvolution field was seldom addressed
in a practical manner, albeit equally vital in image restoration
area. We propose a novel framework for effective blind image
deblurring by patch-wise prior based adaptive shrinkage cas-
cades, which introduces the powerful internal patch-based image
statistics to the non-blind shrinkage field formulations. The rich
expressiveness of internal patch prior brings instance-specific
adaptivity to alternating kernel refinement between neighboring
shrinkage cascades, while shrinkage model trained from varieties
of natural image collections benefits internal patch-wise prior
inference with external information and superior efficiency.

Index Terms—Blind Image Deblurring; Image Deconvolution;
Image Restoration;

I. INTRODUCTION

Camera shake during the exposure time in digital photogra-
phy often results in undesirable image degradations. Although
showing effectiveness on a certain extent, current stabilization
techniques embedded with modern cameras and smart devices
still cannot handle relatively large and/or rapid camera motion
(see Figure 1a). Recapturing is also usually impossible after
realizing the blurry results. Blind image deconvolution aims to
solve this problem by estimating a latent sharp version of the
blurry input image when the blur kernel is unknown, which is
a severely ill-posed problem due to the ambiguity. Even when
the ideal blur kernel was known beforehand (i.e., non-blind
deconvolution), directly doing the inversion will still yield an
unpleasing result lacking high-frequency details, due to the
corruption of inevitably existing unknown noise and outliers.

(a) blurry image (b) deblurred image

Fig. 1: Blind deconvolution results through our adaptive shrinkage cascades
framework. The predicted blur kernel is shown at the top-left corner of (b).

To solve this ambiguity problem, varieties of prior knowl-
edge, namely, regularizer, have been proposed to refine the
restoration process in last decades. Currently, most success-
ful blind deconvolution approaches aim to estimate the blur
kernel (i.e., point spread function) first [2], [8], [16], [22],
which is then fixed to bootstrap the non-blind deconvolution
process. On the one hand, patch-wise approaches, e.g., [18],
[24], attract even more interests than pixel-wise competi-
tors due to their rich expressiveness. On the other hand,
despite existing generative non-blind deblurring approaches,
such as TV-L1 model [23] and Gaussian Markov random
fields [14], achieve good deblurring results, their complicated
optimization scheme restricts their extension to the real world
applications. In contrast, newly emerged discriminative non-
blind deconvolution methods, including the neural network-
based scheme [15], [17], regression tree fields (RTF)-based
prediction cascades [13], and shrinkage fields [12], achieve
impressive image restoration quality comparable with, or
surpassing, the current state-of-the-art generative competitors.
However, considering the increasing importance of discrim-
inative approaches, their extensions to united blind image
deconvolution are still relatively ignored, especially for the
relationship with the patch-wise blur estimation schemes.

In this paper, we propose an adaptive shrinkage cascade
approach for blind image deconvolution inspired by the non-
blind shrinkage field deconvolution framework [12]. Our pro-
posed approach can adapt to specific deblurring target due to
the internal image patch recurrence property, while keeping the
superior quality of shrinkage fields. We also design an efficient
optimization framework to ensure the minimization conver-
gence. In particular, Schelten et al. [11] first extended the
non-blind discriminative RTF framework to blind deblurring
tasks by interleaving the RTF cascades with standard kernel
updating, but the interleaved RTF cascades still suffer from
complicated field structure, and the trained model lacks the
instance-specific adaptivity as our proposed framework. Wang
et al. [21] attempted to combine the power of discriminative
random fields with patch-based deconvolution methods, by
using RTF model to index the Expected Patch Log-Likelihood
(EPLL) based patch priors [24]. However, the refined model
still relies on the complex Gaussian mixture model (GMM)
learning the scheme, and lacks inter-related blur kernel esti-
mations.

The proposed framework generalizes the discriminative non-



Fig. 2: Flowchart of the proposed adaptive shrinkage cascade framework. The input blurry image x is shrunk by a factor of α, then the result x∗ contains
α-times less the amount of blur. The final deblurred result is generated through all the cascade stages in a multi-scale manner.

blind deconvolution procedure to the blind deconvolution with
the patch-based blur kernel inference. It also reveals more
insights on the connection between discriminative and patch-
wise optimization methods. Our main contributions include:
• A novel framework which bridges the gap between patch-

based prior inference scheme and discriminative non-
blind deconvolution methods;

• An effective way of constructing alternating discrimina-
tive deconvolution scheme which leverages the internal
image patch recurrence statistics.

II. RELATED WORK

In the blur kernel estimation field, the pixel-wise image
prior has been extensively studied, including the heavy-tailed
gradient distribution [2], hyper-Laplacian distributions [7],
salient edge prior [22], or the natural image power law [3].
Recently, patch-wise image prior has attracted particular at-
tention since its larger spatial support could model complex
image structures and dependencies in larger neighborhoods,
thus faithfully describe the prior knowledge in middle and high
levels. Sun et al. [18], [19] further extended this framework
by augmenting the single-scale patch priors to a multi-scale
formulation. Without relying on a large scale external image
training dataset, Michaeli et al. [9] focused on studying de-
blurring using the internal image statistics such as the internal
patch recurrence property. This method better copes with the
self-similarity structures including the relatively smooth scenes
of sky, ocean or square, which cannot be handled by external
patch-based competitors.

On the deconvolution stage, conditional random fields
(CRFs) are often employed in discriminative image restoration
methods. Tappen et al. [20] firstly proposed highly efficient
discriminatively trained Gaussian CRFs. Recently the regres-
sion tree fields (RTFs) [6] methods are widely used, in which
the parameters of these Gaussian CRFs are determined by non-
parametric regression trees. Its effectiveness and efficiency
have been successfully validated in varieties of restoration

tasks, especially for deconvolution and denoising [5], [6]. Re-
cently, existing discriminative non-blind deblurring approaches
rely either on neural network [15], [17], or conditional random
field (CRF) cascades [12], [13]. We hereby propose a new
method based on shrinkage field cascades [12], since the
stacked structure could effectively benefit the blind kernel
refinement process.

III. SHRINKAGE CASCADE FOR BLIND DECONVOLUTION

A. Non-blind Shrinkage Fields

To effectively extend the discriminative non-blind deconvo-
lution procedure to blind deconvolution field, we first analyze
the structure of shrinkage fields, and how it could be adapted
into a stage refinement manner with patch prior based kernel
estimation, instead of naive direct concatenation. First we
model the camera shake in a blurry image by employing
a conventional formation which models image blur as con-
volution under additive noise: y = x ⊗ k + ε, where x
denotes the latent image, k is the blur kernel, ε as the image
noise, ⊗ for the convolution process and y is the observed
blurry image. The latent sharp image is then restored x
from its corrupted observation y by combining an observation
likelihood and an image prior: p (x|y) ∝ p (y|x)·p (x), here the
corruption process is modeled with a Gaussian likelihood. To
minimize the posterior distribution p(x|y) ∝ exp(−E(x|y)),
directly employing gradient-descent algorithms is not satisfy-
ing enough. We hereby rely on the half-quadratic optimization
which introduces independent auxiliary variables zic for all
filter responses η = fTi xc over all cliques c to obtain an
augmented energy function E(x, z|y).

E (x, z|y) =
λ

2
‖y −Kx‖2 +

N∑
i=1

∑
c∈C

[
β

2
(η − zic)2 + ρi (zic)],

(1)

where the parameters β and ρ are introduced as the constraints.
zic denotes the auxiliary variables and η affects the corre-



sponding filter responses. K denotes the convolution matrices
corresponding to the blur kernel k, and λ is related to the
strength of the assumed additive Gaussian noise. Regulariza-
tion is provided through a Markov random field model (fields
of experts [10]) with robust potential functions ρi. The further
alternating minimization procedure replaces the conventional
shrinkage function in the wavelet image restoration litera-
ture [4] with a flexible shrinkage function modeled as a linear
combination of Gaussian RBF kernels, and at the same time
keeps the purpose to shrink small filter/wavelet coefficients
by pulling them towards zero, because they are assumed to be
caused by noise instead of signal.

Since half-quadratic optimization typically involves several
iterations, multiple predictions could be chained as a cascade
of shrinkage fields. Therefore, we aim to interleave the patch-
wise kernel refinement procedure between different cascade,
to further effectively boost the performance of overall decon-
volution system, which is described in details in Section III-C.

B. Internal Patch Recurrence of Natural images

Due to the impressive performance and efficiency of the
discriminative shrinkage field non-blind deconvolution frame-
work, combining their power with compatible blur kernel
estimation scheme seems to be a natural idea. Directly input
the blur kernel estimated by classical leading pixel-wise blur
estimation approaches into the discriminative CRF scheme
does not perform well [12], since the CRF framework asso-
ciates nonadjacent pixels by connecting them in the field and
needs larger spatial support. For the patch-wise schemes, the
internal patch-based method [9] only depends on the internal
statistics of the blurry image itself, therefore, cannot benefit
from the externally learned information to restore detailed
high-frequency textures, thus compromises image details for
smoothness. This could be compensated by the discriminative
shrinkage field model learned from a dataset with rich varieties
of natural images.

Internal patch-based deblurring methods aim to take full
advantage of the cross-scale recurrence property which most
natural images obey but diminish in blurry images. Thus, the
deviations from ideal patch recurrence could be exploited as
a clue for recovering the underlying unknown blur kernel.
In particular, while the blur is strong in the original input
blurry image, the blur decreases at coarser scales of the image.
Specifically, if we shrink a blurry image x by a factor of α,
then the result x∗ contains α-times less the amount of blur, as
illustrated in Figure 2. These patches in coarser image scales
can thus serve as a good patch prior for deblurring the input
scales.

As the internal patch pool constructed based on every
target input blurry image is context-appropriate and self-
adaptive, the internal patch-based method handles the self-
similarity blurry regions and other instance-specific image
structures well, which could compensate the generally trained
discriminative shrinkage field deconvolution model by further
tuning the shrinkage stages in the model at the testing stage
(see Section III-C).

C. Adaptive Shrinkage Cascades

Although the internal patch-based blur estimation is able
to provide decent kernel predictions for the discriminative
shrinkage field deconvolution framework, a naive combination
of the two estimation and deconvolution methods methods will
not lead to a satisfactory improvement in the final deblurring
results, because the blur kernel estimated beforehand is fixed
in the shrinkage field deconvolution process, like the RTF
cascades in [13]. In this case, re-estimation and refinement
of the blur kernel during different cascades of shrinkage fields
is necessary and beneficial. In this case, we tend to embed
the internal patch-wise kernel refinement between neighboring
shrinkage cascades, and tune the pre-trained shrinkage cascade
model with the instance-specific adaptation property of inter-
nal patch recurrence statistics.

More specifically, we seek an image x̂ and a blur kernel
k̂ such that x̂ satisfies the patch recurrence property, (i.e.,
strong similarity between patches across scales of x̂) as well
as k̂⊗x̂ approaches the blurry image y as much as possible. At
every shrinkage cascade stage, we compute the kernel update
using the cross-scale patch recurrence refinement scheme by
minimizing the following objective function with respect to k:

arg min
x̂,k
‖y − k ⊗ x̂‖2 + λ1ρ(x̂, x̂α) + λ2 ‖k‖2 . (2)

Hereby, the x̂α is an α-times smaller version of x̂. The second
term p(x, xα) measures the degree of dissimilarity defined
as the minus EPLL between patches in x and their nearest
neighbor patches in xα. The third term is a regularizer on the
kernel k.

ρ(x̂, x̂α) = −
∑
j

log

(∑
i

exp {Γ}

)
,

Γ = − 1

2h2
‖Qj x̂−Rix̂a‖2 ,

(3)

where h is a bandwidth parameter, Qj and Ri are matrices that
extract the corresponding patches from x̂ and x̂α respectively.
Here we initialize the whole blind adaptive shrinkage cascade
framework with a delta function kernel δ, then refine the
kernel over the shrinkage cascades in a coarse-to-fine scales
of image pyramid scheme, i.e., the final kernel estimate at
one scale is upsampled to serve as the initial estimate of the
next scale of shrinkage cascades. This alternating minimization
procedure is essential for updating the ρ(x, xα), because the
EPLL metric makes the objective function non-convex, thus
no closed-form solution could be directly gotten. In the other
hand, EPLL introduces the patch-based probabilistic prior to
our framework. Figure 2 illustrates the whole scheme of the
adaptive shrinkage cascades. Hereby, shrinkage cascades are
used to predict image and kernel estimates at each level of a
Gaussian pyramid. The estimates at one level are enlarged to
serve as inputs for the next finer level. Going from coarse to
fine, we train progressively more powerful shrinkage models
to account for the higher level of image details.



(a) blurry input (b) ground truth (c) Cho&Lee [22]

(d) Xu&Jia [23] (e) Michael [9] (f) Proposed

Fig. 3: Comparison on uniformly blurry synthetic natural image in [18].

(a) blurry input (b) ground truth (c) Cho&Lee [22]

(d) Xu&Jia [23] (e) Michaeli [9] (f) Proposed

Fig. 4: Comparison on synthetic natural scene image similar to Figure 3.

D. Learning the Shrinkage Cascade Parameters

The adaptive shrinkage cascades excel due to their adapt-
ability to kernel estimation, and yield better results when
trained with rich varieties of natural image collections. Here
we train the cascade model based on the Berkeley Segmenta-
tion Dataset [1], by downsampling all 500 grayscale images
to half size, compressing outliers, and reducing noise, then
getting the synthetic blurry images with selected kernels which
are totally different from the ones in testing dataset.

To leverage more discriminative features than simple pixel
intensities, we adopt the fields of experts (FoE) filter bank
of [10]. By learning different model parameters for every stage
of our cascade, we essentially learn random field models for
each iteration of the corresponding optimization algorithm.
As [23] suggested, we train our model with a mixture of
perfect and estimated kernels instead of the ground truth
kernel, since it helps to adapt to kernel estimation errors at
the test stage and achieves superior performance.

In the non-blind deconvolution part, we follow [13] and
parameterize the prediction with the blur kernel, such that the
instance-specific blur is provided at inference. Although our
model is not trained for any specific blurs, it could still benefit
from the context-aware internal patch recurrence property
as indicated in Section III-B. Here the shrinkage functions
are differentiable and do not need time-consuming custom
optimization like [11].

IV. EXPERIMENTS

In this section, the proposed framework is evaluated on
multiple synthetic blurry images, including natural and man-
made scenes. To guarantee the fair comparison, we bootstrap
our scheme with the rough kernel from [23] as Schmidt
et al. [12] and Schelten et al. [11] do. Figures 3 and 4
demonstrate that our method preserves challenging regions of
image texture, while suppressing ringing and noise artifacts
in smooth regions or on the image boundary, which shows
visibly superior performance of the shrinkage cascades over a
wide variety of blind deconvolution methods.

Figure 5 illustrates that the instance specific adaptivity in
our framework can deal with relatively smooth regions in
blurry images. While other methods stuck in the difficult
self-similar sky region and produce unsatisfying results, our
proposed adaptive shrinkage cascades substantially achieve
better deblurring results due to the adaptivity to varying
structures, especially for self-similarity. The zoomed-in area
shows that Michaeli et al. [9]’s framework also handles the
smooth region well, but the results seem to be slightly over-
smoothed and lack details.

(a) blurry input (b) ground truth (c) Cho&Lee [22]

(d) Xu&Jia [23] (e) Michaeli [9] (f) Proposed

Fig. 5: Comparison on an blurry image in [18] with explicits self-similar
regions, which demonstrates the effectiveness of the proposed framework on
varying structures and relatively smooth regions in blurry images.

V. CONCLUSION

In this paper, we have investigated the underlying con-
nection between the patch-based prior inference scheme and
discriminative non-blind deconvolution method, and have con-
structed an effective alternating deconvolution scheme which
takes full advantage of the internal image patch recurrence
property. The experiment results visually validate the effective-
ness of the proposed adaptive shrinkage cascade framework.
It will also help improve the performance by introducing the
power of Convolutional Neural Networks (CNN) for the blur
kernel prediction in the future.
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