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Abstract— A wearable Obstacle Stereo Feedback (OSF) 

System for the Blind people based on 3D space obstacle 

detection is presented to assist the navigation. The OSF system 

embedded with a depth sensor to perceive the in-front 3D spatial 

information in the form of point clouds. We implemented the 

downsampling Random Sample Consensus (RANSAC) 

algorithm to process the perceived point cloud, and detect the 

obstacles in front of the user. Finally, Head-Related Transfer 

Functions (HRTF) are applied to create the virtual stereo sound 

which represents the obstacles according to its coordinate in the 

3D space. The experiment shows that OSF system can detect the 

obstacle in the indoor environment effectively and provides a 

feasible auditory perception to indicate the in-front safety zone 

for the blind user. 

I. INTRODUCTION 

According to the World Health Organization (WHO) Fact 
Sheet of Visual impairment and blindness as of Auguest 2014, 
285 million people are estimated to be visually impaired 
worldwide: 39 million are blind and 246 million have low 
vision [1], as shown in Fig. 1. In addition, there is an increase 
of the blindness statistic data in the past decade in United 
States, according to Blindness Statistics Data from National 
Eye Institute (NEI), the cases of the blindness in 2000 and 
2010 in United States are around 0.9 million, and 1.3 million 
respectively[2]. White cane and dog guide are the simplest 
existing tools to help them for mobility. 

 
Fig. 1 Visually imparied people of the disablity wordwide 
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To help visually impaired people to live independently and 
improve their living quality, there are a wide range of 
navigation and obstacle avoidance tools available for the blind 
and the visual impaired. The ability of visually impaired 
people to access, understand, and explore unfamiliar 
environment will improve their inclusion and integration into 
the society. Among these mentioned functionalities, the 
obstacle avoidance is essential for the mobility of the blind 
users. 

Electronic devices helping the Blind and the visually 
impaired starts from 1960s. In term of vision substitution 
aspect, these aids system fall into the following categories [3]: 

1) Electronic travel aids (ETAs): ETAs are the devices that 
transform information about the environment and provide 
various types of feedback to the user. 

2) Electronic orientation aids (EOAs): EOAs are devices 
that provide orientation prior to, or during the travel. 

3) Position locator devices (PLDs): PLDs include 
technologies like GPS, European Geostationary Navigation 
Overlay Service (EGNOS), etc. 

This paper presents and implements an audio feedback 
ETAs named Obstacle Stereo Feedback (OSF) system. 
Compared with Echolocation, Navbelt and FIU which use 
Ultrasonic, vOICe, Stuttgart, Virtual Acoustic Space and 
NAVI which use cameras, OSF system detects the position of 
the obstacle in front of the blind using 3D space inspection 
sensor, with higher obstacle inspection accuracy and reliability 
than the sensors like sounds, cameras, etc. Similar to FIU and 
Virtual Acoustic Space system, OSF system also uses 
head-related transfer functions (HRTF) to create a 3D stereo 
sound environment that represents the obstacles detected by 
the sensors. As to the use convenience, OSF system is a 
free-hands, wearable, and free-ears system which only 
provides reminder when detected obstacle and will not 
interfere the user’s ability to listen to the surroundings. One of 
the limitation of the OSF system is that the Kinect sensor we 
deployed is not reliable in the outdoor environment due to the 
direct Sun illumination that leads to saturation in the depth 
acquisition. This research is based on our previous work on the 
indoor assistive navigation [5]-[8]. 

The structure of the OSF system is shown in Fig. 2. The 
system runs on the ROS framework, and uses Kinect to 
acquire 3D depth data, and then obstacle detection is 
processed to get the cloest points in the point cloud. Finally we 
generate the stereo sound based on HRTF, which is used to 
provide as the feedback to the user, with the direction 
information of the obstacle location. 
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Fig. 2 Structure of the OSF in Assistive Navigation System 

This paper is organized as follows: In section II, the 3D 
space inspection sensor and obstacle inspection techniques are 
elaborated. In section III, the Obstacle Stereo Feedback and 
HRTFs are introduced and applied to represent the obstacle 
position. In section V, the system implementation and 
experiment result of the OSF system in assistive navigation are 
shown. Finally, conclusion and future work are discussed. 

II. OBSTACLE 3D DETECTION 

In this section, we describe how to find the 3D coordinate 
of the obstacle from 3D depth sensor data. The position of an 
obstacle relative to the blind can be presented as a vector of 
three quantities: p = [d, θh, θv]T, where d: obstacle distance, θh: 
obstacle horizontal direction, θv: obstacle vertical direction. 

The position of the obstacle is determined based on 
information acquired by the 3D detection sensor. In this OSF 
prototype which is used in indoor environment. RGB-D 
Kinect sensor is adopted as the 3D sensor. RGB-D sensor 
features an RGB camera and depth sensor, and its depth sensor 
consists of an infrared laser projector and a monochrome 
CMOS sensor. Using the depth sensor, 3D point cloud data of 
the environment can be acquired. Next the model of the floor 
is detected based on the 3D point cloud data using Improved 
Random-down sampling RANSAC (RANdom SAmple 
Consensus) algorithm. Finally the obstacle is detected as the 
nearest off-floor point related to the blind. 

A. 3D point cloud data 

Online 3D perception of the front space is a crucial 
precondition for the reliable and safe mobility for the blind. 
Using RGB-D camera, we are able to present the OSF system 
for acquiring and processing 3D semantic information at the 
frame up to 30Hz which can detect obstacles, segment objects, 
supporting floor surfaces as well as the overall scene geometry 
in front of the Blind. 

Depth information of the ambient space is repented as 
depth image in RGB-D sensor. Given a pixel q = [u, v, d]T in 
the depth image, where u and v are the image indices, and d is 
the raw depth measurement of the RGB-D camera, we can 

express it as a 3D point p = [x, y, z]T , in the camera coordinate 
frame [4]: 
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Where we have the following parameters: 

Z0: distance to the reference plane used for stereo matching 
(an internal device parameter) 

b: the baseline between the IR projector and camera 

f: focal distance of the IR camera 

cx, cy: IR image optical center 

Noise of the depth sensor is handled using Gaussian 
mixture model by our previous research whose code is 
released as ROS open source package (ccny-rgbd) [13]. 

After we get the transferred data, which is in the camera 
frame. Data needs to be transferred to the world frame by rigid 
transformation because of sensor rotation. 
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Fig. 3 Raw data frame 

Given a point in camera as pc = [x, y, z] T. 

In the case without considering sensor rotation, 
transformation matrix Rcw:  

cw
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Thus point in the world frame: pw = Rcw * p. 

Next, considering the sensor rotation, the data in the world 
frame will be calibrated according to the Roll, Pitch, Yaw 
angle, which is measured by the model calculated in the next 
section in this paper. Some notations are defined as: 

Model of the plane: [a b c d] T, ax + by + cz + d = 0 

Model of the floor: model_f = [0 0 1 hc] T, where: hc is the 
height of the camera. 

Rotation matrix of the floor plane: 

Rf  =  Rot(z, φ) * Rot(y, ψ) * Rot(x, θ) 

where each Rot is rotation matrix.   



  

Pw = [x, y, z]T: a point of the floor in the before-calibration 
world frame. 

pw′ = [x, y, z]T: the coordinate of this point in world frame. 

Then we have (T means transposition): 

pw′ = Rf * pw 

pw′T * model_f  =  0 

pw
T * model  =  0 

With the calculated model_f, we can get Rf and hc: 
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Finally we get the 3D point cloud data set in the calibrated 
world frame. 

B. Floor model segmentation 

Geometry plan segmentation is the prerequisite for 
obstacle detection. Once we get the 3D point cloud data, the 
challenge is to find the obstacle in the real-time efficiency. The 
first step is to remove the floor plan data. RANSAC (RANdom 
SAmple Consensus) is an algorithm for robust fitting of 
models in the presence of many data outliers, however it is 
highly degraded with the increase number of the data outliers. 
In this paper, an improved down sampling RANSAC 
algorithm is proposed as the solution to find the floor model 
effectively. 

Compared with the traditional RANSAC algorithm, which 
is promoted by Fischler in 1981[9], and some improved 
RANSAC including down sampling and precertification 
techniques, the proposed improved down sampling RANSAC 
algorithm specifies the model by combining with the spatial 
information, which categories into down sampling approach. 
In this case, we assume the space position of the floor within 
z-max value. 

Given the raw 3D point cloud data set as S, the down 
sampling filter is applied on each point. The down sampling 
data set is acquired by: 
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Where Fz-max is set as the maximum z value of the floor. 

Pseudo code for the proposed improved down sampling 
RANSAC algorithm: 

______________________________________________

Algorithm for              improved downsampling RANSAC

Down sampling the data set from S 
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C. Obstacle detection 

After applying the model to data set S to find all inlier data, 
obstacle position can be detected in the outlier data. In this 
paper, we just pick up the nearest off-floor point in front of the 
sensor as the obstacle for auditory feedback perception, while 
it is also filtered with an adjustable alarm-distance value in the 
horizontal plane with regard to the location of the blind. 

III. OBSTACLE STEREO FEEDBACK 

Human’s ears can not only differentiate the sound 
intensity, but also predict the sound 3D direction in the 
environment, which involves the shadow sound which is 
created by the head and the reflection which is caused by the 
edges of the outer ears. Intuitively, we can see the influence of 
the outer ear edge to the input sound. 

Different with monaural, and stereo sound, which are 
recorded by one or two microphones in empty space 
respectively, binaural recordings sound more realistic since 
they are recorded by the microphones embedded in a dummy 
head, in a manner which closely resembles the human’s 
acoustic system. Thus binaural sound is closer to what human 
beings hear in the real word since the filter of the dummy head 
acts as a similar way of the human head. 

To provide the obstacle position information to the blind 
by the 3D binaural sound, we need to synthesize accurate 3D 
sound. Current technology of modeling the human acoustic 
system have taken binaural recordings one step further by 
recoding the sound by the dummy head of different racial 
human beings. It is called head-related transfer function 
(HRTF) database. HRTF is a linear filter functions including a 
pairs (left and right) of finite impulse response (FIR) filters for 
specific sound positions [10]. 

Database of HRTFs covering the whole directions are rare 
except that of MIT HRTF database in US and Itakura lab 
HRTF database in Japan et al[11]. Here MIT HRTF database 
is adopted as the filter function for the spatial position 
information representation. MIT HRTF Database is an 
extensive set of HRTF measurements of a KEMAR dummy 
head microphone was completed in May, 1994. The 



  

measurements consist of the left and right ear impulse 
responses from a Realistic Optimus Pro 7 loudspeaker 
mounted 1.4 meters from the KEMAR[12]. 

Saying we use the sound: 

x(t) = the sound of “obstacle” 

The pulse response of the obstacle from the HRTF 
database is hL(t), hR(t). Performing the signal convolution: 

yL(t) = x(t) * hL(t)                                                    (1) 

yR(t) = x(t) * hR(t)                                                    (2) 

Then synthesize left and right channels are repented by: 

y(t) = [yL(t), hR(t)]                                                   (3) 

IV. SYSTEM IMPLEMENTATION AND EXPERIMENT 

In this section, we first illustrate the system 
implementation in our experiment, and then discuss the 
conditions and results of the experiments. In order to verify the 
system, a blind-fold user is participated in experiments (Fig. 
4). The experiments are taken place on the ST-Hall sixth floor, 
Groovy School of Engineering at CCNY. 

A. System implementaton 

The sensors of the whole system include an ASUS Xtion 
PRO as RGBD Kinect senor, a Phidgets Spatial 3/3/3 as IMU 
and a Logitech C920 HD camera. We use a Samsung S3 
laptop with speaker and microphone and a Lenovo Y510 
laptop as processors. The reason of using two laptops is: the 
Xtion occupies 80% of the bus bandwidth such that the 
remaining bandwidth is unable to fulfill the demand of the rest 
devices. As described before, the IMU is sticking on the belt 
mounted RGB-D camera to get visual odometry; the camera is 
wearable as a hat; the laptops are placed in a backpack. Only 
RGBD Kinect senor depth data is used to detect obstacle. 

The software is implemented under the platform of the 
robotics operating system (ROS) in Ubuntu, we use our 
previous work the ccny-rgbd-tools which is available online to 
perform visual odometry [13], a wrapped and simplified 
character appearance and structure modeling [16] to extract 
room numbers. We use the CMU 
pocketsphinx-speech-recognition [14] as the speech 
recognition tool, and use the sound_play in audio_common 
package [15] to deliver text to speech commands. The obstacle 
avoidance is combining with our navigation system [17]. 

B. Experiment 

A blind-fold user wear the sensors, with laptop in the 
backpack are shown as below. The RGB-D sensor detects the 
depth info, and then convert to the 3D point cloud, as shown in 
Fig. 4, and Fig. 5. 

 

Fig. 4 Experiment setup 

 

Fig. 5 RGB-D data of the front space 

 

Fig. 6 Down sampling data and RANSAC outcome 

After the point cloud of the in-front space is acquired, we 
use the improved downsampling RANSAC algorithm to find 



  

the model of the floor. The green point could are the inlier data 
of the model as shown in Fig. 6. 

Finally the model is applied on the whole dataset as shown 
in Fig. 7. The green point clouds is the inlier model data, blue 
point clouds are the outlieres, and the red point is the position 
of the nearest obstacle. 

 

Fig. 7 Apply model and find obstacle in outliers 

After acquiring the red point as the obstacle, with its 
coordinate in the world frame, the representation of the 
obstacle can be achieved: p = [d, θh, θv]T . 

With θh, θv, and corresponding HRTFs data, binaural 
sound for obstacle reminder is synthesized, and d is used as the 
sound intensity. Currently, the horizontal direction of the 
sound can be roughly differentiated. 

The obstacle detection is intergrated in our indoor 

navigation system (including the acoustic feedback 

functionality in this research), is tested by a blind-folded user 

on the sixth floor of the City College Engineering Building.  

V. CONCLUSION 

In this research, we have designed and implemented a 
wearable Obstacle Stereo Feedback (OSF) functionality to 
assist indoor navigation for the visually impaired or the blind 
users. The experiment shows the effectiveness of the method 
used to detect obstacles and represent the obstacle position by 
auditory perception. The OSF system is capable of reliably 
detecting obstacles at high frame rates (30HZ). The 
segmentation of the floor plan is effectively to be removed to 
provide the obstacle position. Further research on the OSF 
system will be concentrated on obstacle objects recognition, 
such as recognizing chairs or stairs, and provide effective 
feedback to the user. 
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