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ABSTRACT

We tackle the text detection problem from the instance-
aware segmentation perspective, in which text bounding
boxes are directly extracted from segmentation results with-
out location regression. Specifically, a text-specific atten-
tion model and a global enhancement block are introduced
to enrich the semantics of text detection features. The at-
tention model is trained with a weakly segmentation super-
vision signal and enforces the detector to focus on the text
regions, while also suppressing the influence of neighbor-
ing background clutters. In conjunction with the attention
model, a global enhancement block (GEB) is adapted to rea-
son the relationship among different channels with channel-
wise weights calibration. Our method achieves comparable
performance with the recent state-of-the-arts on ICDAR2013,
ICDAR2015, and ICDAR2017-MLT benchmark datasets.

Index Terms— Text detection, instance segmentation, at-
tention, richer feature representation

1. INTRODUCTION

Scene text broadly exists in our daily life. It appears almost
everywhere such as supermarket labels and traffic signs. In
the recent decade, scene text detection becomes increasingly
crucial in computer vision tasks such as image retrieval [1]
and autonomous driving [2]. However, due to the large vari-
ance of aspect ratio, scale, and illumination, especially for the
multi-oriented text regions, scene text detection is actually
one of the most challenging tasks in computer vision fields.
Because of these inevitable challenges and complexities, tra-
ditional methods [3, 4, 5] usually tend to first detect individual
characters or parts of the text such as extracting extreme re-
gions and then group them by exhaustive search methods.

In recent years, deep learning-based methods have been
popular to solve the object detection problem. The most pop-
ular methods are based on proposal and multi-stages [6, 7, 8].
Through first extracting region-of-interest (ROI), and then
performing the bounding box regression, the network could
perform reasonably well on detecting text. However, cer-
tain problems still arise from these approaches. Early meth-
ods usually stem from the Faster-RCNN [7] model, such as

[9, 10, 11, 12]. Ma at al. [10] proposed a method to de-
tect texts in arbitrary orientations by injecting the angle infor-
mation of the anchor bounding boxes. After the ROI pool-
ing, regressions for both bounding box and the angle were
conducted for prediction. Jiang et al. proposed to predict
the axis-aligned bounding boxes and the inclined minimum
area boxes together for multi-oriented text detection [11]. In-
stead of using the inclined anchor boxes to predict the an-
gle information, they added one more output branch to pre-
dict the oriented bounding boxes and also introduce the in-
clined non-maximum suppression to filter the highest confi-
dence score of the oriented results. However, due to the two-
stage design with each ROI being independent, the high com-
putational overhead is inevitable. The network has to do the
classification and bounding boxes regression for each ROI,
which introduces too many parameters to compute. Then,
with the R-FCN [13] proposed, the position sensitive score
map is designed to solve this problem. Different ROIs could
share weights through position sensitive score map and sig-
nificantly accelerate the computation speed. However, due to
the fully-convolution design, the network loses the global in-
formation because there are no fully-connected layers within
the network. In this way, the network could not effectively
capture the global and context information which is crucial to
the detection performance.

In parallel, following the design of the one-shot object de-
tectors such as SSD [14] and YOLO [15], there are some other
methods like textboxes [16], textboxes++[17] and seglink
[18] that perform text detection in the one-stage manner. The
text classification and detection are performed densely with-
out objectness-based pruning. Because of sharing weights
through all of the bounding boxes, the network could highly
improve the computation efficiency. And meanwhile, they
also apply the multiple convolution layers to detect text with
different size and aspect ratios. Therefore, the semantic infor-
mation is learned in a hierarchical manner. Smaller and larger
texts are detected by the lower layers and higher layers respec-
tively. However the lower level features are not semantically
rich enough, and these sparse visual features are easily lean-
ing to miss small text in detection. In addition, the high-level
features are also possibly damaged by the poor low-level fea-
tures. Deng et al. proposed Pixel-Link method based on the
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Fig. 1. Our proposed framework consists of three main components: Text attention model, Pixel-link Backbone and Global
Enhancement Blocks (GEBs). Given an input image, the proposed framework can generate pixels and links outputs. Text
regions can be detected by connecting the positive links.

instance segmentation for text detection [19] which is simple
and effective. Their network structure follows the Deep Di-
rect Regression design and changes the output of each stage
directly to the text/non-text and link prediction. Inspired by
Pixel-Link [19], our proposed approach frames the text de-
tection task from the instance-aware segmentation perspec-
tive. First a text attention model is introduced to provide the
network an attention and guide the network to focus on the
scene text region at the lower level feature. Also, it brings in
strong semantic information to lower layers. The lower layer
is supervised by a weak text-map ground truth. Then a global
enhancement block is proposed to solve the problem that the
network is too local to be discriminate enough because there
is no fully connected layer or global average pooling layer
to provide the global context. The global enhancement block
can explore the relationship of different channels and provide
more semantic information to higher layers.

In summary, our method is efficient and end-to-end train-
able from an instance-aware segmentation perspective. In
addition, since there is no anchor box limitation, the net-
work is more robust to predict arbitrary oriented bounding
boxes compared to the existing methods. The main con-
tributions are: 1) the text attention model is designed to
provide the guided attention to the low-level text features,
therefore, the performance of text detection can be improved
by introducing strong semantic information to lower layers;
2) the global enhancement block is able to re-calibrate the

weights among channels and improve high-level features ac-
cordingly; and 3) the experiments show that our method
achieves top-performing results on three widely-used pub-
lic benchmarks: ICDAR2013, ICDAR2015 and ICDAR2017-
MLT, without adopting extra training data.

2. METHODOLOGY

In the Pixel-Link [19] paper, the network extracts features of
input images and obtains the prediction of text and link map
output, including positive, negative pixels and links between
pixels and their neighbors through bottom-up and element-
wise sum operations. Positive pixels are grouped together by
positives links. Then the network clusters the text regions by
connective components and cv2-minarea-recantangle meth-
ods to obtain the bounding boxes of the detected text re-
gions. However, the pixel-link network is still a fully con-
volutional design and there is no fully connected or global
average pooling structure to enforce the global context rea-
soning. In addition, the features extracted by lower layers are
still relatively plain without providing sufficient semantic in-
formation. Therefore, we introduce the attention model and
global enhancement blocks (GEB) to improve the Pixel-Link
framework.



2.1. Overview

Following the design in Pixel-Link [19], VGG16 is employed
as our backbone to extract image features. As shown in Figure
1, we integrate a text attention model at the end of Conv2
to provide richer semantic information to the low-level layer
and then combine the global enhancement blocks [20] after
the Conv3, Conv4, Conv5 to capture more global context
information respectively.

The attention model is trained with weak text maps to
guide the network to focus on text regions, while blocking
the influence of the surrounding noisy background. As shown
in Figure 1, the text attention model takes the feature map of
the Conv2 layer as the input, and generates a newly activated
Conv2’ feature map as the output and continuously performs
the following detection steps.

As for the higher layers, GEBs are applied. Since the text
features are mainly learned from the lower layers, the GEBs
contribute on introducing more global context information to
enrich the feature representation in a self-supervised manner.
Take the feature map from Conv3 to Conv5 as input, the
GEBs output the re-calibrated feature maps as the enriched
semantic features.

2.2. Text Attention Model

In order to train the text attention model, we first generate
weak text maps from the word level ground truth bounding
boxes. Then the attention model can be trained by taking the
lower layer feature mapX and the weak text map as the input,
and output the feature map which is enhanced by the semantic
information. The enhanced feature map guides the network to
pay more attention to the scene text regions and carries more
semantic information.

As shown in Figure 1, for a input lower layer feature map
with size XC×H×W , the network is designed to generate the
intermediate layer feature maps g(x), mainly through 4 di-
lated convolutional layers with a dilated rate = 2 (kernel size
= 3× 3). After the intermediate feature maps g(x) have been
generated, the attention model is divided into two streams.
One stream passes the sigmoid layer and predicts the text
map. The prediction P = F(g(x)) has the size of X2×H×W ,
which is same as the G ∈ R2×H×W (text and background).
As for the other stream, g(x) is used to generate the local
activation map, Z = H(g(x)) ∈ RC×H×W . The generated
activation map guides the network’s attention to the scene text
regions via an element-wise multiplication: X ′ = X�Z. X ′

is the enhanced feature map which combines both low-level
general text features and the high-level semantic information.
Therefore, the original feature maps X will be replaced by
the enhanced feature maps X ′ before performing the remain-
ing convolutions.

Examples of the proposed attention model and the im-
proved text detection results compared to Pixel-Link are
shown in the Fig 2. For better visualization of the results

comparison, several text detection regions are enlarged. Com-
pared to the Pixel-Link network [19], more missing text re-
gions are detected by our method with the attention model.

Fig. 2. Comparison between our proposed method and Pixel-
Link [19] baseline method. In the first column, our detection
results are represented in green boxes and the Pixel-Link re-
sults are shown in red boxes. The orange boxes show the en-
larged text regions for a better visualization. Second column
shows the corresponding attention maps generated by our at-
tention model with high attention on text regions.

2.3. Global Enhancement Blocks

To capture more global context information, in conjunction
with the attention model, a global activation model is intro-
duced at the end of the higher convolutional stage. It contains
several GEBs to re-calibrate weights (i.e., measure the impor-
tance) among different channels. Each GEB consists of three
parts: squeeze, excitation, and fusion.

For the input feature map of GEBs with size X = H ×
W×C, the embedded vector Zc of the global average pooling
can be generated by Eq. (1).

Zc = Fsq(X) =
1

H ×W

H∑
i=1

W∑
j=1

X(i, j). (1)

Therefore, the local descriptors could be collected and thus
global information is able to be squeezed into the vector. Here
X(i, j) represents the value of each pixel in the feature map.
After squeezing the information into the vector, an excitation
network is employed to extract the global information from
Zc : Sc = Fex(z,W ) = σ(g(z,W )) = σ(W2δ(W1z)),
where σ is the sigmoid function and δ is the ReLU function.
W1z is the first fully connected layer with length C/r (r is
the reduction radio) and W2δ(W1z) is the second fully con-
nected layer with length C. Finally, the outputs of the exci-



tation network need to be fused to the heading feature map
X: X ′ = Fscale(X,Sc) = Sc �X , where Fscale means the
channel-wise multiplication between the original feature map
X and the scalar Sc.

2.4. Loss function

In addition to the pixel loss and link loss in Pixel-Link, at-
tention loss is added in our framework to supervise the text
attention model with the weak text map ground truth. The
loss function is as follows:

L = λ1Lpixel + Llink + λ2Lattention (2)

Due to the importance of the pixel and attention loss, we set
the λ1 = λ2 = 2, and the Lpixel, Llink are the Instance-
Balanced Cross-Entropy Loss proposed in the Pixel-Link
and Class-Balanced Cross-Entropy Loss, respectively. The
Lattention is used to optimize the global text attention:

Lattention =
1

N

∑
i

− log(
epi∑
j e

pj
) (3)

where Lattention is the cross entropy loss and p is the pre-
dicted output of the attention model.

3. EXPERIMENTS

3.1. Evaluation Datasets

The effectiveness of our proposed framework is evaluated on
three public benchmark datasets from International Confer-
ence on Document Analysis and Recognition (ICDAR) com-
petitions in years of 2013, 2015, and 2017.
ICDAR 2013 [21] contains 229 images for training, and 233
for testing. Text instances in this dataset are mostly in hori-
zontal orientation and annotated as rectangles at character and
word-level.
ICDAR 2015 [22] consists of 1000 scene text images col-
lected from internet or captured by volunteers for training.
The texts are annotated as text line polygons, 500 images are
selected for testing. These text are mostly in arbitrary orien-
tations and more complicated than the ICDAR 2013 dataset.
ICDAR2017-MLT [23] provides more challenging scene text
images including multi-oriented, multi-scripting, and multi-
lingual texts. There are 9 different kinds of lingual texts and
7, 200 training images, 1, 800 validation images, and 9, 000
testing images.

3.2. Implementation Details

All experiments are trained only on ICDAR 2013, 2015, and
2017 datasets without employing pretrained weights on Syn-
thText 80k dataset or other external datasets as many recent
methods and tested on the test subsets. VGG16 is used as the

Table 1. Text detection results on ICDAR 2013 dataset.
Method Recall (%) Precision (%) F-measure (%)

Seglink[18] 83.00 88.00 85.00
TextBoxes MS [16] 83.00 89.00 86.00
TextBoxes++ MS [17] 86.00 92.00 89.00
CTPN [9] 83.00 83.00 88.00
WordSup [26] 88.00 93.00 90.00
Lyu et al. [27] 79.40 93.30 85.80
Pixel-Link [19] 87.50 88.60 88.10
Mask Textspotter [24] 94.10 88.10 91.00
Ours 89.20 91.50 90.30

backbone network to extract features and Stochastic Gradient
Descent (SGD) is adopted as the optimization method with
momentum = 0.9, batch size = 8. The VGG model and the
new layers we added are all initialized by Xavier initializa-
tion. The learning rate is set to 0.008 for the first 1, 000 iter-
ations and then 0.01 for the following steps. First, we train
the model on ICDAR 2015 and obtained the testing results
for ICDAR 2015. Then the ICDAR 2015 pre-trained model
is employed and finetuned on the ICDAR 2013 for another
80K iterations. For ICDAR 2017-MLT, both the training and
validation splits are used for training and we train the net-
work with 300K iterations. All input images are resized to
512× 512 after rotation augmentation.

In our experiments, the reduction radio r in the GEB
equals to 16. Considering the limited ability of single fully
connected layer and the computation overhead of stacking FC
layers, we choose to adopt 2 FC layers.

3.3. Experiment Results and Analysis

Here, both qualitative and quantitative results are provided to
demonstrate the effectiveness of our proposed method to de-
tect horizontal, multi-oriented, and multi-lingual scene texts.
Figure 3 shows some text detection examples by our proposed
network, and Tables 1, 2, 3 show the detailed performance
compared with the state-of-the-arts.
Horizontal Text, ICDAR 2013 Results: As shown in Table
1, our proposed method achieves 90.3% f-score which outper-
forms the baseline Pixel-Link more than 2% and is compara-
ble to the state-of-the-art results. The performance of Mask
Textspotter [24] method is 0.7% higher than our method,
however, it used SynthText 80k dataset for pre-training.
Oriented Text, ICDAR 2015 Results: As shown in Table
2, our proposed method obtains 85.94% on the ICDAR 2015
dataset, which is about 2.3% higher than the Pixel-Link base-
line. It is still around 1% lower than the PSENET [25]. Em-
pirically, the gain of PSENET most likely results from the
advantages of ResNet and FPN backbone networks adopted
in PSENET.
Multi-Lingual Text, ICDAR2017-MLT Results: As shown
in Table 3, our method outperforms all the state-of-the-arts



Fig. 3. Examples of scene text detection results by our proposed method.

Table 2. Text detection results on ICDAR 2015 dataset.
Methods Recall (%) Precision (%) F-measure (%)

CTPN [9] 51.60 74.20 60.90
Seglink [18] 70.80 73.10 75.00
East [28] 72.80 80.50 76.40
SSTD [29] 73.00 80.00 77.00
WordSup [26] 77.00 79.30 78.20
RRPN [10] 77.00 84.00 80.00
R2CNN [11] 79.68 85.62 82.54
Textboxes++ [17] 78.50 87.80 82.90
East [28] 78.30 83.30 80.70
Text-snake [30] 80.40 84.90 82.60
Pixel-Link [19] 82.00 85.50 83.70
FTSN [31] 80.00 88.60 84.10
IncepText [32] 80.60 90.50 85.30
PSENET [25] 89.30 85.22 87.21
Ours 84.91 87.00 85.94

methods and achieves 67.48% f-score which is 7% higher
than the Pixel-Link baseline by using the same training set-
tings. Compared to FOTS [33] which used the recognition
results to supervise the training process, our model achieves a
better performance.

3.4. Effects of Attention Model and GEBs

To verify the effects of the proposed attention model and
GEBs, as shown in Table 4, a series of experiments are
conducted on the ICDAR 2015 dataset with different settings.
Without pretrained weights and external dataset, the best
performance of Pixel-Link-2S baseline method (The size
of final output feature map is half of the original image)
achieves 83.7% f-score. By only adding the attention model,

Table 3. Detection results on ICDAR 2017-MLT dataset with
multi-lingual texts.

Method Recall Precision F-measure

TH-DL [23] 34.80 67.80 46.00
Pixel-Link [19] 55.37 67.07 60.66
SARI FDU RRPN V1 [10] 55.50 71.20 62.40
Sensetime OCR [23] 69.40 56.90 62.60
SCUT DLVClab1 [23] 54.50 80.30 65.00
Lyu et al. [27] 55.60 83.80 66.80
FOTS [33] 57.51 80.95 67.25
Ours 63.50 72.00 67.48

the performance (f-score) increases to 85.16%. The high
improvement of recall shows that attention model could
significantly assist in finding the hard text examples in
natural scene images. By only adding the GEBs, the F-score
of the detection is boosted to 84.53%. By adding both the
attention model and the GEBs, the performance is boosted
up to 85.94%. This proves that with the attention model
and GEBs, the network is able to provide more semantic
information in lower layers and global information in higher
layers and achieve better performance of text detection.

4. CONCLUSION

In this paper, we have presented an effective end-to-end
framework for detecting multi-lingual scene texts in arbitrary
orientations by integrating text attention model and global
enhancement block with the pixel-link method without adopt-
ing pretrained weights or extra synthetic datasets. Under the
guidance of the text region attention and the global context



Table 4. Effects of the Proposed Attention Model and Global
Enhancement Blocks (GEBs) on ICDAR 2015 Dataset.

Attention GEB Recall(%) Precision(%) F-measure(%)
× × 82.00 85.50 83.70
X × 84.39 85.94 85.16
× X 83.50 85.60 84.53
X X 84.91 87.00 85.94

of the global enhancement block, our method achieves com-
parable performance with the recent state-of-the-arts on three
benchmark datasets. In the future, we aim to improve the pro-
posed pipeline to better handle irregular curved text instances.
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